Journal of Organometallic Chemistry, 129 (1977) 91–96 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ABSOLUTE KONFIGURATION EINES η -CYCLOPENTADIENYLDICARBONYLMOLYBDÄN-CHELAT-KOMPLEXES

A.T. LIU, W. BECK

Institut für Anorganische Chemie der Universität, Meiserstrasse 1, D-8000 München 2 (B.R.D.) G. HUTTNER * und H. LORENZ

Anorganisch-Chemisches Institut der Technischen Universität, Arcisstrasse 21, D-8000 München 2 (B.R.D.)

(Eingegangen den 13. September 1976)

Summary

The crystal and molecular structure of η -C₅H₅(CO)₂MoC(O)CHPhCHCH₃NHCH₃ has been determined by X-ray analysis (1292 diffractometer data, $R_1 = 0.056$). The absolute configuration of the complex has been inferred from the known configuration of the CHCH₃ carbon atom of the chelating ligand, which remains unaltered during preparation of the compound. The individual molecules within the crystal are linked by intermolecular N-H-O hydrogen bridges (N-H-O 291 pm).

Zusammenfassung

Die Kristall- und Molekülstruktur von η -C₅H₅(CO)₂MoC(O)CHPhCHCH₃NHCH₃ wurde durch eine Röntgenstrukturanalyse bestimmt (1292 Diffraktometer-Daten, $R_1 = 0.056$). Die absolute Konfiguration des Komplexes ergab sich aus der Kenntnis der Konfiguration am CHCH₃-Kohlenstoffatom des Chelatliganden, die bei der Synthese der Verbindung erhalten bleibt. Die einzelnen Moleküle werden im Kristall durch intermolekulare N··H··O-Wasserstoffbrücken zusammengehalten (N··H··O 291 pm).

 η -Cyclopentadienyltricarbonylmolybdänhydrid, C₅H₅(CO)₃MoH (I) reagiert mit substituierten Aziridinen zu β -Aminoacyl-Chelat-Komplexen [1,2]. Die einheitliche Morphologie der bei diesen Reaktionen erhaltenen Kristallisate deutete ebenso wie ¹H-NMR- und CD-Spektren darauf hin, dass die Bildung der Chelat-

* Sonderdruckanforderungen bitte an Dr. Gottfried Huttner

Komplexe unter vollständiger asymmetrischer Induktion verläuft [2]. Durch eine Röntgenstrukturanalyse wurde nachgewiesen, dass die Umsetzung von cis-(2R, 3S)-1,3-Dimethyl-2-phenylaziridin (II) mit I auschliesslich zur $(S_{Mo}, R_N, 1S, 2S)$ -Chelat-Verbindung III führt:

Strukturbestimmung

Ein Kristall ($0.25 \times 0.25 \times 0.30$ mm) von III wurde unter Stickstoff in eine Glaskapillare eingeschmolzen. Seine Zellkonstanten wurden Präcessionsaufnahmen näherungsweise ermittelt und durch Anpassung an die 20-Werte 15 hoch indizierter Reflexe ($20 > 20^\circ$, Vierkreis-Diffraktometer SYNTEX-P2₁, Graphit-Monochromator, λ -Mo- $K_{\alpha} = 71.069$ pm) verfeinert.

Die Messdaten wurden nach der ω -Scan-Methode gesammelt: $\Delta \omega = 1^{\circ}$, $0.9 \leq \omega \leq 27.9^{\circ} \text{ min}^{-1}$, Untergrundmesszeit = Peakmesszeit. Die Lösung (Schweratommethode) und die Verfeinerung (volle Matrix) der Struktur erfolgten mit dem Strukturlösungsgerät SYNTEX-XTL zunächst in der Raumgruppe $P4_12_12$. Die absolute Konfiguration des Komplexes wurde aufgrund der Kenntnis der Konfiguration an einem Kohlenstoffatom (C5 in Fig. 1) der Verbindung ermittelt. Nach dieser Festlegung erwies sich die zu $P4_12_12$ enantiomorphe Raumgruppe $P4_32_12$ als richtig, auf die daher die in Tab. 1 angegebenen Parameter bezogen sind.

Ergebnisse

Eine Ansicht des Moleküls gibt Fig. 1; Kristall- und Strukturdaten finden sich in Tab. 1.

Das Molekül III zeigt den für Verbindungen des Typs η -C₅H₅MoL₄ [3–8] typischen idealisiert tetragonal pyramidalen Bau: Die Spitze der Pyramide wird vom η -Cyclopentadienyl-Liganden eingenommen; zwei zueinander *cis*-ständige Positionen an der Basis der Pyramide sind von Carbonylgruppen besetzt; an die zwei verbleibenden Koordinationsstellen ist der 1-Phenyl-2-methyl-*N*-methyl-propionyl-Ligand über den Amin-Stickstoff und das Acylkohlenstoffatom als Chelatligand gebunden. Der Bau des Moleküls III gleicht damit dem der unsubstituierten Stammverbindung η -C₅H₅(CO)₂MoC(O)CH₂CH₂NH₂, deren Struktur von Jones und Guggenberger bestimmt wurde [8].

Der Cyclopentadienylring ist innerhalb der Fehlergrenzen eben und liegt an-

Fig. 1. Die Struktur von III.

nähernd parallel (3.4°) zu der von den Ligandenatomen an der Basis der Pyramide aufgespannten Ebene. Die C—C-Abstände im Ring schwanken zwischen 139(2) und 148(2) pm. Die Abweichungen von ihrem gemeinsamen Mittelwert von 141 pm sind kaum signifikant. Deutliche Unterschiede zeigen sich jedoch in den {M—C—}-Bindungslängen: Die Bindungen Mo—C13 und Mo—C14 sind (230(1) und 231(1) pm) deutlich kürzer als die Bindungen Mo—C12 (235(1) pm) und Mo— C15 (236(1) pm); am längsten ist die Bindung Mo—C11 mit 242(1) pm. Es ist denkbar, dass für die unterschiedlichen Mo—C_{C5H5}-Bindungslängen sterische Wechselwirkungen massgebend sind, da das Kohlenstoffatom C11 mit dem Stickstoffatom des Chelat-Liganden auf Deckung steht. Ähnliche Beobachtungen wurden bereits für eine Reihe anderer η -C₅H₅MoL₄-Komplexe gemacht [4—8], wobei sterische und elektronische Effekte als Ursache für die unterschiedlichen Mo—C_{C5H5}-Bindungslängen diskutiert wurden.

Der Chelat-Ligand

Durch chemische Untersuchungen ist klargestellt, dass bei der Synthese von III die Konfiguration am Kohlenstoffatom C5 erhalten bleibt [2]. Daraus folgt zwingend die in Fig. 1 dargestellte Konfiguraton des Komplexes. Der Chelat-Ring nimmt eine unsymmetrische δ -Konformation ein. Die Abweichungen der Ringatome C4 und C5 von der Ebene C3,Mo,N betragen 35 bzw. 94 pm.

Der Mo-N-Abstand liegt in dem für andere Mo-N-Bindungen beobachteten Bereich (222-232 pm) [9]. Der Abstand des Acylkohlenstoffatoms C3 von Metall (Mo-C3 217(1) pm) ist erwartungsgemäss gegenüber einer Mo-C-

TABELLE 1

STRUKTUR- UND KRISTALLDATEN VON III "

Atom	x/a	у/Б	zle	Ato	ome	Abstand (Pm)
Mo	-0.1852(1)	0.6597(1)	-0.1797(1) Mo	-C1	200(1)
Cl	-0.265(1)	0.659(1)	-0.280(1)	Mo	-C2	202(1)
C2	-0.233(1)	0.771(1)	-0.182(1)	C1-	-01	112(2)
C3	-0.120(1)	0.617(1)	-0.296(1)	C2-	-02	112(2)
C4	-0.051(1)	0.664(1)	-0.331(1)	Мо	-C3	217(1)
C5	-0.046(1)	0.747(1)	-0.284(1)	Мо	N	225(1)
N	-0.067(1)	0.727(1)	-0.183(1)	C3-	-C4	149(2)
01	-0.308(1)	0.659(1)	-0.337(1)	C4-	-C5	155(2)
02	-0.260(1)	0.833(1)	-0.180(1)	C5-	-N	158(1)
03	-0.1337(5)	0.5521(5)	-0.3330(5) C3-	-03	123(1)
C6	0.040(1)	0.785(1)	-0.289(1)	C4-	-C21	148(1)
C7	-0.065(1)	0.803(1)	-0.128(1)	C5-	C6	158(2)
C11	-0.134(1)	0.599(1)	0.044(1)	N	C 7	152(2)
C12	-0.207(1)	0.636(1)	-0.027(1)	Мо		242(1)
C13	0.267(1)	0.597(1)	-0.077(1)	Mo	-C12	235(1)
C14	-0.225(1)	0.535(1)	-0.129(1)	Mo	-C13	230(1)
C15	-0.142(1)	0.541(1)	-0.109(1)	Mo	-C14	231(1)
C21	-0.052(1)	0.672(1)	-0.429(1)	Mo	C15	236(1)
C22	-0.119(1)	Ð.702(1)	-0.474(1)	C11	IC12	139(2)
C23	-0.117(1)	0.718(1)	0.570(1)	C12	2C13	140(2)
C24	-0.050(1)	0.696(1)	-0.614(1)	C13	3-C14	148(2)
C25	0.016(1)	0.661(1)	-0.576(1)	C14	4-C15	142(2)
C26	0.017(1)	0.647(1)	-0.478(1)	C15	5C11	138(2)
Atom	B ₁₁	B ₂₂	B33	B12	B ₁₃	B23
Мо	4.72(5)	5.07(6)	3.14(3)	0.47(4)	0.44(4	0.53(4
Cl	5.1(7)	5.6(8)	4.9(6)	0.7(6)	0,9(5)	0.1(6)
C2	5.7(8)	7.4(9)	4.9(6)	-1.3(6)	1.0(7)	0.6(7)
C3	3.6(6)	3.8(6)	2.4(4)	0.2(5)	-0,7(4)	0.5(4)
C4	4.8(6)	4.2(6)	2.2(4)	-0.2(5)	1.1(4)	0.9(5)
C5	4.3(7)	6.2(7)	3.5(5)	0.1(6)	0.4(5)	0.0(5)
N	4.0(5)	5.4(5)	3.2(4)	0.6(4)	0.9(4)	-0.9(4)
01	5.4(5)	10.8(7)	6.8(5)	1.8(5)	-2.6(4)	0.0(5)
02	8.1(6)	6.0(5)	10.3(6)	3.3(5)	1.8(6)	2.2(5)
03	6.0(5)	5.2(4)	3.8(4)	-0.3(4)	0.9(4)	0.7(4)
C6	6.9(9)	6.8(9)	4.8(6)	-3.0(7)	0.9(6)	-0.1(6)
C7	7.0(8)	6.0(8)	4.2(6)	-1.2(7)	0.8(6)	-1.2(6)
CII	7.2(8)	5.1(7)	3.7(5)	-0.8(6)	0.9(5)	2.4(5)
CIZ	7.6(9)	5.7(8)	2.8(5)	1.4(6)	1.3(5)	1.3(5)
C13	6.3(8)	8.9(9)	3.7(5)	-0.1(7)	1.7(6)	2.5(7)
C14	15.8(16)	4.8(8)	2.7(5)	-3.3(9)	-0.9(7)	0.9(6)
C15	6.0(8)	5.0(7)	5.2(6)	1.5(6)	-0.2(6)	1.6(6)
C21	4.3(6)	6.6(8)	3.2(5)	1.0(6)	0.4(5)	2.1(6)
022	5.2(7)	9.2(10)	3.8(6)	0.8(7)	0.5(5)	0.2(6)
C23	6.2(8)	11.4(11)	4.3(6)	0.3(8)	-1.1(7)	-0.3(8)
024	6.8(8)	7.7(9)	3.3(5)	-1.7(7)	1.0(6)	0.6(6)
C25	6.7(8)	11.3(11)	4.2(6)	1.4(9)	2.2(6)	-0.4(8)
C26	6.9(9)	11.7(12)	4.1(7)	3.4(9)	2.4(6)	0.9(7)

94

Atome	Winkel ('')	Kristalldaten				
C1-Mo-C2	74.6(5)	C ₁₈ H ₁₉ MoNo ₃ , Tetragonal, Raumgruppe P4 ₃ 2 ₁ 2,				
C1-Mo-C3	74.2(5)	$a = b = 1662.5(10), c = 1495(1) \text{ pm}, Z = 8, D_{\text{ber}} = 1.26;$				
C2-Mo-N	83.4(4)	$D_{gem} = 1.3 \text{ g cm}^{-3}$, 1292 Messdaten, $R_1 = 0.056$, $R_2 =$				
C3-Mo-N	73.3(4)	0.055.				
C1-Mo-N	124.2(4)					
C2-Mo-C3	119.2(5)					
Mo-C1-O1	178(1)					
Mo-C2-O2	178(1)					
Mo-C3-O3	123.9(7)	•				
Mo-C3-C4	119.5(7)					
Mo-N-C5	108.7(6)					
Mo-N-C7	115.5(7)					
C5-N-C7	109.7(8)					
C4-C5N	103.4(8)					
C4C5C6	112.1(9)					
N-C5-C6	109.6(9)					
C3-C4-C5	110.3(9)					
C3-C4-C21	112.8(9)					
C5-C4-C21	111.3(9)					

^a Die eingeklammerten Zahlen bezeichnen die Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. Der Tamperaturfaktor T ist gegeben durch: $T = \exp[-1/4(h^2a^{*2}B_{11} + ... + 2hka^*b^*B_{12} + ...)]$: B in 10⁴ pm².

Einfachbindung deutlich verkürzt [Mo– C_{Et} 240 pm in η - $C_5H_5(CO)_3MoEt$ [10], Mo– C_{Me} 238 pm in $C_{10}H_8(CO)_3MoEt$ [11], Mo– C_{CH_2COOH} 236 pm in η - $C_5H_5(CO)_3$ -MoCH₂COOH]. Die beobachtete Verkürzung von etwa 20 pm lässt sich im Sinne einer Mesomerie nach:

$$Mo-C \xrightarrow{O}_{R} Mo=C \xrightarrow{O}_{R}$$

TABELLE 1 (Fortsetzung)

am einfachsten deuten. Dafür spricht auch der C–O-Abstand C3–O3, der mit 123(1) pm den C–O-Abständen in Carbonsäuren und deren Estern entspricht [13], sowie die langwellige ν (CO)-Absorption, die mit 1584 cm⁻¹ [14] mehr als 100 cm⁻¹ gegenüber der CO-Absorption in aliphatischen Ketonen langwellig verschoben ist.

Mo- C_{co} - und C- O_{co} -Bindungslängen der linearen Mo-C-O-Gruppierungen (201 bzw. 112 pm) entsprechen den üblichen Werten [3-8]. Die einzelnen Moleküle werden im Kristall durch Wasserstoffbrücken zwischen N und O3 miteinander verbunden (N--H--O 291 pm).

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie und dem Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften für die Förderung dieser Arbeit. Herrn Prof. Dr. E.O. Fischer sind wir für die Uberlassung von Institutsmitteln zu Dank verpflichtet.

Literatur

- 1 W. Beck, W. Danzer und R. Höfer, Angew. Chem., 85 (1973) 87; Angew. Chem. Int. Ed., 12 (1973) 77.
- 2 W. Beck, W. Danzer, A.T. Liu, G. Huttner und H. Lorenz, Angew. Chem., 88 (1976) 511; Angew. Chem. Int. Ed. 15 (1976) 495.
- 3 S.J. LaPlaca, I. Bernal, H. Brunner und W.A. Hermann, Angew. Chem., 87 (1975) 379; Angew. Chem. Intern. Ed., 14 (1975) 353.
- 4 M.R. Churchill und J.P. Jennessey, Inorg. Chem., 6 (1967) 1213.
- 5 P.H. Bird und M.R. Churchill, Inorg. Chem., 7 (1968) 349.
- 6 R.H. Fenn und J.H. Cross, J. Chem. Soc. A, (1971) 3312.
- 7 A.T. McPhail, G.R. Knox, C.G. Robertson und G.A. Sim, J. Chem. Soc. A, (1971) 205.
- 8 G.A. Jones und L.J. Guggenberger, Acta Cryst. B, 31 (1975) 900.
- 9 C.K. Prout, G.B. Allison, L.T.J. Delbaere und E. Gore, Acta Cryst. B, 28 (1972) 3034 und dort zitierte Literatur.
- 10 M.J. Bennett und R. Mason, Proc. Chem. Soc., (1963) 273.
- 11 P.H. Bird und M.R. Churchill, Inorg. Chem., 7 (1968) 349.
- 12 J.K.P. Aryaratne, A.M. Bjerum, M.L.H. Green, M. Ishaq, C.K. Prout und M.G. Swanick, J. Chem. Soc. A, (1969) 1309.
- 13 Chemical Society Special Publication Nr. 18, London, 1965.
- 14 Persönliche Mitteilung W. Danzer.
- 15 J.C. Speakman in Molecular Structure by Diffraction Methods, Vol. 2, S. 45, The Chemical Society, London, 1974.